631 research outputs found

    Extremism propagation in social networks with hubs

    No full text
    One aspect of opinion change that has been of academic interest is the impact of people with extreme opinions (extremists) on opinion dynamics. An agent-based model has been used to study the role of small-world social network topologies on general opinion change in the presence of extremists. It has been found that opinion convergence to a single extreme occurs only when the average number of network connections for each individual is extremely high. Here, we extend the model to examine the effect of positively skewed degree distributions, in addition to small-world structures, on the types of opinion convergence that occur in the presence of extremists. We also examine what happens when extremist opinions are located on the well-connected nodes (hubs) created by the positively skewed distribution. We find that a positively skewed network topology encourages opinion convergence on a single extreme under a wider range of conditions than topologies whose degree distributions were not skewed. The importance of social position for social influence is highlighted by the result that, when positive extremists are placed on hubs, all population convergence is to the positive extreme even when there are twice as many negative extremists. Thus, our results have shown the importance of considering a positively skewed degree distribution, and in particular network hubs and social position, when examining extremist transmission

    Multilevel Modular Mesocrystalline Organization in Red Coral

    Get PDF
    International audienceBiominerals can achieve complex shapes as aggregates of crystalline building blocks. In the red coral skeleton, we observe that these building blocks are arranged into eight hierarchical levels of similarly (but not identically) oriented modules. The modules in each hierarchical level assemble into larger units that comprise the next higher level of the hierarchy, and consist themselves of smaller, oriented modules. EBSD and TEM studies show that the degree of crystallographic misorientation between the building blocks decreases with decreasing module size. We observe this organization down to a few nm. Thus, the transition from imperfect crystallographic order at mm scale to nearly perfect single crystalline domains at nm scale is progressive. The concept of 'mesocrystal' involves the three-dimensional crystallographic organization of nanoparticles into a highly ordered mesostructure. We add to this concept the notion of 'multilevel modularity'. This modularity has potential implications for the origin of complex biomineral shapes in nature. A multilevel modular organization with small intermodular misorientations combines a simple construction scheme, ruled by crystallographic laws, with the possibility of complex shapes. If the observations we have made on red coral extend to other biominerals, long-range crystallographic order and interfaces at all scales may be key to how some biominerals achieve complex shapes adapted to the environment in which they grow

    Applying the adverse outcome pathway (AOP) for food sensitization to support in vitro testing strategies

    Get PDF
    Background Before introducing proteins from new or alternative dietary sources into the market, a compressive risk assessment including food allergic sensitization should be carried out in order to ensure their safety. We have recently proposed the adverse outcome pathway (AOP) concept to structure the current mechanistic understanding of the molecular and cellular pathways evidenced to drive IgE-mediated food allergies. This AOP framework offers the biological context to collect and structure existing in vitro methods and to identify missing assays to evaluate sensitizing potential of food proteins. Scope and approach In this review, we provide a state-of-the-art overview of available in vitro approaches for assessing the sensitizing potential of food proteins, including their strengths and limitations. These approaches are structured by their potential to evaluate the molecular initiating and key events driving food sensitization. Key findings and conclusions The application of the AOP framework offers the opportunity to anchor existing testing methods to specific building blocks of the AOP for food sensitization. In general, in vitro methods evaluating mechanisms involved in the innate immune response are easier to address than assays addressing the adaptive immune response due to the low precursor frequency of allergen-specific T and B cells. Novel ex vivo culture strategies may have the potential to become useful tools for investigating the sensitizing potential of food proteins. When applied in the context of an integrated testing strategy, the described approaches may reduce, if not replace, current animal testing approaches

    Transport Properties near the z=2 Insulator-Superconductor Transition

    Full text link
    We consider here the fluctuation conductivity near the point of the insulator-superconductor transition in a system of regular Josephson junction arrays in the presence of particle-hole asymmetry or equivalently homogeneous charge frustration. The transition is characterised by the dynamic critical exponent z=2z=2, opening the possibility of the perturbative renormalization-group (RG) treatment. The quartic interaction in the Ginzburg-Landau action and the coupling to the Ohmic heat bath, giving the finite quasiparticle life-time, lead to the non-monotonic behavior of the dc conductivity as a function of temperature in the leading logarithmic approximation.Comment: Revised version for publication. To appear in PR

    Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies

    Get PDF
    We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-μm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts.Peer reviewe

    Kasner and Mixmaster behavior in universes with equation of state w \ge 1

    Full text link
    We consider cosmological models with a scalar field with equation of state w≥1w\ge 1 that contract towards a big crunch singularity, as in recent cyclic and ekpyrotic scenarios. We show that chaotic mixmaster oscillations due to anisotropy and curvature are suppressed, and the contraction is described by a homogeneous and isotropic Friedmann equation if w>1w>1. We generalize the results to theories where the scalar field couples to p-forms and show that there exists a finite value of ww, depending on the p-forms, such that chaotic oscillations are suppressed. We show that Z2Z_2 orbifold compactification also contributes to suppressing chaotic behavior. In particular, chaos is avoided in contracting heterotic M-theory models if w>1w>1 at the crunch.Comment: 25 pages, 2 figures, minor changes, references adde

    Sub-Poissonian statistics in order-to-chaos transition

    Full text link
    We study the phenomena at the overlap of quantum chaos and nonclassical statistics for the time-dependent model of nonlinear oscillator. It is shown in the framework of Mandel Q-parameter and Wigner function that the statistics of oscillatory excitation number is drastically changed in order-to chaos transition. The essential improvement of sub-Poissonian statistics in comparison with an analogous one for the standard model of driven anharmonic oscillator is observed for the regular operational regime. It is shown that in the chaotic regime the system exhibits the range of sub- and super-Poissonian statistics which alternate one to other depending on time intervals. Unusual dependence of the variance of oscillatory number on the external noise level for the chaotic dynamics is observed.Comment: 9 pages, RevTeX, 14 figure
    • …
    corecore